首页 | 本学科首页   官方微博 | 高级检索  
     


Facile one-pot synthesis of nanocoral-like cerium-activated cobalt selenide: a highly efficient electrocatalyst for oxygen evolution reaction
Authors:He  Qihang  Wang  Xuejiao  Zhou  Pengcheng  Ge  Qianao  Fu  Tongxing  Chen  Shouxian  Xiao  Feng  Yang  Peilin  He  Ping  Jia  Lingpu  Yang  Dingming
Affiliation:1.State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, People’s Republic of China
;2.International Science and Technology Cooperation Laboratory of Micro-Nanoparticle Application Research, Mianyang, 621010, People’s Republic of China
;
Abstract:

The development of hydrogen production via environment-friendly and efficient electrochemical water splitting technology leans heavily on the exploitation of highly active and durable oxygen evolution reaction (OER) electrocatalysts. Herein, nanocoral-like cerium-activated cobalt selenide (Ce-CoSe2) nanocomposites to enhance the OER catalytic activity have been successfully prepared by one-pot hydrothermal route via simply altering the cerium content. Owing to the ingenious introduction of cerium, as-prepared Ce-CoSe2 electrode displays remarkable OER performance in comparison with CoSe2. The nanocoral-like Ce-CoSe2 catalyst prepared under optimal condition just needs low overpotential of 276 and 398 mV at 10 and 50 mA cm?2, respectively. Additionally, it attains the current density of 255 mA cm?2 at the potential of 2.0 V vs. RHE, and shows long-term stability during OER. This work offers a simple and feasible pathway for the design and construct of metal dichalcogenides for green and renewable hydrogen production by electrocatalytic water splitting.

Graphical abstract
 loading=
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号