首页 | 本学科首页   官方微博 | 高级检索  
     


CoP-anchored high N-doped carbon@graphene sheet as bifunctional electrocatalyst for efficient overall water splitting
Authors:Guilin Li  Lei Li  Zhan Lin
Affiliation:Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
Abstract:Electrocatalytic water splitting, as an ideal technology in renewable energy applications, suffers from high electrical energy consumption due to the slow kinetics of HER and OER reactions. Therefore, it is urgent to design efficient bifunctional catalysts to improve the reaction kinetics. Herein, a self-supported electrode, anchoring CoP nanoparticles on N-doped carbon/graphene (NC-G) and chemically growing on Ni foam as a whole electrode (denoted as NC-G-CoP/NF) displays promising electrocatalytic performance in 1.0 M KOH electrolyte, with a low overpotentials of 68 mV at 10 mA cm?2 for HER and 255 mV at 50 mA cm?2 for OER. This bifunctional electrocatalyst only needs 1.435 V to generate 10 mA cm?2 for overall water splitting. The outstanding electrocatalytic performance is ascribed to the following factors: i) inherent nature of transition metal phosphides, ii) abundant and high dispersion N active sites in NC-G, iii) strong interaction between the NC-G and CoP nanoparticles, and iv) rapid electron transfer between the catalytic centers and Nickle foam. This provides a new perspective to design efficient electrocatalysts for electrocatalytic water splitting.
Keywords:N-doped carbon  Cobalt phosphide  Electrocatalysis  Water splitting  Energy conversion
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号