首页 | 本学科首页   官方微博 | 高级检索  
     


Development of nanosilica-based catalyst for syngas production via CO2 reforming of CH4: A review
Authors:Chi Cheng Chong  Yoke Wang Cheng  Mahadi B Bahari  Lee Peng Teh  Sumaiya Zainal Abidin  Herma Dina Setiabudi
Affiliation:1. Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, 26300, Gambang, Kuantan, Pahang, Malaysia;2. Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia;3. Centre for Advanced Materials and Renewable Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia;4. Centre of Excellence for Advanced Research in Fluid Flow, Universiti Malaysia Pahang, 26300, Gambang, Kuantan, Pahang, Malaysia
Abstract:The alarming global warming issue has sparked interest in researchers to mitigate greenhouse gas emissions via CO2 reforming of CH4 (CRM). Regrettably, the main drawback of CRM is catalyst deactivation because of coking and metal sintering. Therefore, exceptional resistance towards coking and sintering is crucial to formulate viable CRM catalysts. This article reviewed the latest development of nanosilica-based catalysts (mesoporous nanosilica, dendritic fibrous nanosilica, green nanosilica, and core@shell nanosilica) for CRM application. The physicochemical properties of nanosilica supports could be modulated by synthesis methods to improve their resistance towards coking and sintering. Furthermore, this review compiled the influence of catalytic properties of nanosilica supported catalysts, such as active metal dispersion, crystallite size, acid-basic properties, oxygen mobility, reducibility, porosity, and morphology on CRM. To conclude, nanosilica supports with strong metal-support interaction, homogeneous metal dispersion, appropriate crystallite size, and moderate acidity/basicity, exhibited satisfactory catalytic activity, thermal stability, and resistance towards coking and sintering. The fundamental study and depth understanding on this catalysis field is of worth in configuring robust catalysts for future industrial applications success of CRM reaction with superb activity and carbon resistance for CRM.
Keywords:Nanosilica supports  Catalytic properties  Coking  Sintering
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号