首页 | 本学科首页   官方微博 | 高级检索  
     


A comprehensive modeling method for proton exchange membrane electrolyzer development
Authors:Zhiwen Ma  Liam Witteman  Jacob A. Wrubel  Guido Bender
Affiliation:National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
Abstract:Hydrogen attracts significant interests as an effective energy carrier that can be derived from renewable sources. Hydrogen production using a proton-exchange membrane (PEM) electrolyzer can efficiently convert renewable power via water splitting in wide scales—from large, centralized generation to on-site production. Mathematical models with multiple scales and fidelities facilitate the continuing improvements of PEM electrolyzer development to improve performance, cost, and reliability. The model scopes and methods are presented in this paper, which also introduces a comprehensive PEM electrolysis modeling tool based on computational fluid dynamics (CFD) software, ANSYS/Fluent. The modeling tool incorporates electrochemical model of a PEM electrolysis cell to simulate the performance of coupled thermal-fluid, species transport, and electrochemical processes in a product-scale cell or stack by leveraging the powerful meshing generation and CFD solver of ANSYS/Fluent. The thermal-fluid modeling includes liquid water/gas two-phase flow and simulates a PEM electrolysis cell by using Fluent user-defined functions as add-on modules accounting for PEM-specific species transport and electrochemical processes. The modeling outcomes expediate PEM electrolyzer scaling up from basic material development and laboratory testing.
Keywords:Low temperature electrolysis water splitting  Proton exchange membrane electrolysis cell  Hydrogen production  Electrochemical modeling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号