首页 | 本学科首页   官方微博 | 高级检索  
     


A review on current trends in potential use of metal-organic framework for hydrogen storage
Authors:Sachin P Shet  S Shanmuga Priya  K Sudhakar  Muhammad Tahir
Affiliation:1. Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India;2. Faculty of Mechanical and Automobile Engineering, Universiti Malaysia Pahang, Pekan, Kuantan 26600, Malaysia;3. Energy Centre, Maulana Azad National Institute of Technology, Bhopal 462003, India;4. School of Chemical and Energy Engineering, Universiti Technologi of Malaysia (UTM), Skudai 81310, Johar, Malaysia
Abstract:Hydrogen can be a promising clean energy carrier for the replenishment of non-renewable fossil fuels. The set back of hydrogen as an alternative fuel is due to its difficulties in feasible storage and safety concerns. Current hydrogen adsorption technologies, such as cryo-compressed and liquefied storage, are costly for practical applications. Metal-organic frameworks (MOFs) are crystalline materials that have structural versatility, high porosity and surface area, which can adsorb hydrogen efficiently. Hydrogen is adsorbed by physisorption on the MOFs through weak van der Waals force of attraction which can be easily desorbed by applying suitable heat or pressure. The strategies to improve the MOFs surface area, hydrogen uptake capacities and parameters affecting them are studied. Hydrogen spill over mechanism is found to provide high-density storage when compared to other mechanisms. MOFs can be used as proton exchange membranes to convert the stored hydrogen into electricity and can be used as electrodes for the fuel cells. In this review, we addressed the key strategies that could improve hydrogen storage properties for utilizing hydrogen as fuel and opportunities for further growth to meet energy demands.
Keywords:Hydrogen  Metal-organic frameworks  Hydrogen storage  Mechanism  Parameters  BTC"}  {"#name":"keyword"  "$":{"id":"kwrd0040"}  "$$":[{"#name":"text"  "_":"Benzene tricarboxylate  DFT"}  {"#name":"keyword"  "$":{"id":"kwrd0050"}  "$$":[{"#name":"text"  "_":"Density functional theory  DMF"}  {"#name":"keyword"  "$":{"id":"kwrd0060"}  "$$":[{"#name":"text"  "_":"Dimethylformamide  DMSO"}  {"#name":"keyword"  "$":{"id":"kwrd0070"}  "$$":[{"#name":"text"  "_":"Dimethyl sulfoxide  GCMC"}  {"#name":"keyword"  "$":{"id":"kwrd0080"}  "$$":[{"#name":"text"  "_":"Grand Canonical Monte Carlo  HOMO"}  {"#name":"keyword"  "$":{"id":"kwrd0090"}  "$$":[{"#name":"text"  "_":"Highest occupied molecular orbital  IUPAC"}  {"#name":"keyword"  "$":{"id":"kwrd0100"}  "$$":[{"#name":"text"  "_":"International union of pure and applied chemistry  LUMO"}  {"#name":"keyword"  "$":{"id":"kwrd0110"}  "$$":[{"#name":"text"  "_":"Lowest unoccupied molecular orbital  MOF"}  {"#name":"keyword"  "$":{"id":"kwrd0120"}  "$$":[{"#name":"text"  "_":"Metal-organic framework  MWCNT"}  {"#name":"keyword"  "$":{"id":"kwrd0130"}  "$$":[{"#name":"text"  "_":"Multi-wall carbon nanotubes  NP"}  {"#name":"keyword"  "$":{"id":"kwrd0140"}  "$$":[{"#name":"text"  "_":"Nanoparticle  PEM"}  {"#name":"keyword"  "$":{"id":"kwrd0150"}  "$$":[{"#name":"text"  "_":"Proton exchange membrane  RH"}  {"#name":"keyword"  "$":{"id":"kwrd0160"}  "$$":[{"#name":"text"  "_":"Relative humidity  SBU"}  {"#name":"keyword"  "$":{"id":"kwrd0170"}  "$$":[{"#name":"text"  "_":"Secondary building unit  SLPM"}  {"#name":"keyword"  "$":{"id":"kwrd0180"}  "$$":[{"#name":"text"  "_":"Standard litres per minute
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号