首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of paper mill sludge as a renewable feedstock for sustainable hydrogen and biofuels production
Authors:Muhammad Tawalbeh  Alex S. Rajangam  Tareq Salameh  Amani Al-Othman  Malek Alkasrawi
Affiliation:1. Sustainable and Renewable Energy Engineering Department, University of Sharjah, Sharjah, P.O Box 27272, United Arab Emirates;2. Wisconsin Institute for Sustainable Technology (WIST), College of Natural Resources, University of Wisconsin, Stevens Point, WI, 54481, USA;3. Department of Chemical Engineering, American University of Sharjah, P.O. Box 26666, United Arab Emirates
Abstract:Paper and pulp mills generate substantial quantities of cellulose-rich sludge materials that are disposed in landfills at a large scale. For sustainability purposes, sludge materials can be bioprocessed to produce renewable fuels and useful chemicals. The enzymatic hydrolysis of cellulose is the process bottleneck that affects the conversion economics directly by using zero-cost raw materials. In order to study and optimize the process, the characteristics of the sludge raw materials should be first evaluated. In this work, sludge samples were obtained from paper mills located at different locations in Wisconsin and Minnesota. Part of the sludge samples was washed (de-ashed) with hydrochloric acid while the other part remained unwashed. The samples were subjected to multiple spectroscopic analyses techniques to evaluate the morphological properties of cellulose fibers and to estimate the total structural carbohydrate content. The results showed that the de-ashing process changed some fiber characteristics and cellulose crystallinity structure in all sludge samples. Sludge sample A (obtained from Kraft pulp and recycled paper mill region) showed a high percentage of fiber, with crystalline cellulose, compared to the other two sludge samples suggesting that sludge A is a valuable source to make value-added products. Aspen Plus mass and energy calculations performed in view of the ‘zero’ cost and the reliable supply of sludge raw materials producing 2 mol H2/mol glucose. Moreover, the results showed that extracting crystalline cellulose from these sludge samples is more profitable than crystalline cellulose made from the other lignocellulosic feedstocks. The results reported here showed that the utilization of these sludge materials would be an economically attractive and promising alternative for the production of hydrogen.
Keywords:Paper mill sludge  Hydrogen  Biofuels  Characterization  Crystalline cellulose  Sum frequency generation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号