Improvement of energy demand forecasts using swarm intelligence: The case of Turkey with projections to 2025 |
| |
Authors: | Alper Ü nler, |
| |
Affiliation: | aDepartment of Information Management Systems, KKK Per. Bsk., Yücetepe 06100, Ankara, Turkey |
| |
Abstract: | The energy supply and demand should be closely monitored and revised the forecasts to take account of the progress of liberalization, energy efficiency improvements, structural changes in industry and other major factors. Medium and long-term forecasting of energy demand, which is based on realistic indicators, is a prerequisite to become an industrialized country and to have high living standards. Energy planning is not possible without a reasonable knowledge of past and present energy consumption and likely future demands. Energy demand management activities should bring the demand and supply closer to a perceived optimum. Turkey's energy demand has grown rapidly almost every year and is expected to continue growing. However, the energy demand forecasts prepared by the Turkey Ministry of Energy and Natural Resources overestimate the demand. Recently many studies are performed by researchers to forecast the energy demand of Turkey. Particle swarm optimization (PSO) technique has never been used for such a study. In this study a model is proposed, using PSO-based energy demand forecasting (PSOEDF), to forecast the energy demand of Turkey more efficiently. Although there are other indicators as well, gross domestic product (GDP), population, import and export are used as basic energy indicators of energy demand. In order to show the accuracy of the algorithm, a comparison is made with the ant colony optimization (ACO) energy demand estimation model which is developed for the same problem. |
| |
Keywords: | Energy demand Swarm intelligence Turkey |
本文献已被 ScienceDirect 等数据库收录! |
|