首页 | 本学科首页   官方微博 | 高级检索  
     

Contourlet概率分布的遥感图像边缘检测方法
引用本文:王相海,陈明莹,徐孟春. Contourlet概率分布的遥感图像边缘检测方法[J]. 中国图象图形学报, 2011, 16(10): 1900-1907
作者姓名:王相海  陈明莹  徐孟春
作者单位:1.辽宁师范大学计算机与信息技术学院;2.南京大学计算机软件新技术国家重点实验室,1.辽宁师范大学计算机与信息技术学院,1.辽宁师范大学计算机与信息技术学院
基金项目:辽宁省自然基金项目(20102123);辽宁百千万人才工程基金项目(2008921036);南京邮电大学图像处理与图像通信江苏省重点实验室开放基金项目(LBEK2010003)。
摘    要:提出一种新的基于Contourlet概率分布的边缘检测算法, 首先,对图像Contourlet系数概率分布的混合高斯分布特性进行分析,并建立图像Contourlet 系数大小状态的概率模型,同时对基于该模型的图像线状奇异信号进行分离;其次,改进最大类间方差的阈值选取方法,提出一种基于类间距离和类内方差的阈值选取方法,在保证类间距离最大的同时提高了类内聚合度;最后,利用所选阈值对分离的图像线状奇异信号进行二值化处理,并对边缘信息进行提取。实验结果表明,与传统经典边缘检测方法相比,所提出的边缘检测方法在有效检测出遥感图像中光滑边缘的同时可以对图像中次要的奇异信息进行有效的屏蔽,具有很好的实用性。

关 键 词:遥感图像;Contourlet变换;高斯混合模型;边缘检测
收稿时间:2010-06-15
修稿时间:2011-05-17

Edge detection of remote sensing image based on contourlet probability distribution
Wang Xianghai,Chen Mingying and Xu Mengchun. Edge detection of remote sensing image based on contourlet probability distribution[J]. Journal of Image and Graphics, 2011, 16(10): 1900-1907
Authors:Wang Xianghai  Chen Mingying  Xu Mengchun
Affiliation:Wang Xianghai1),2),Chen Mingying1),Xu Mengchun1) 1)(College of Computer and Information Technology,Liaoning Normal University,Dalian 116029 China) 2)(State Key Laboratory for Novel Software Technology,Nanjing University,Nanjing 210093 China)
Abstract:We propose a new approach for detecting edges based on Contourlet probability distribution. First we analyze the mixture of Gaussian distribution traits of the Contourlet coefficients. Then we establish the probability model regarding the Contourlet coefficients which can be described by the big state and the small state. At the same time, we separate the linear singular signals on the model of the image. Afterwards, we improve the maximal between-class variance by a threshold selection method based on the variance between different classes and the in-class variance. This can ensure the maximum distance between classes, while simultaneously increasing the degree of polymerization in a class. Furthermore, we use the threshold for the binarization of the separated singular signals and extract the edge message. Compared to traditional methods, our method detects smooth edges in remote sensing images effectively. Meanwhile, it can shield the unimportant singular information, making it is useful for practical applications.
Keywords:remote sensing image  Contourlet transform  Gaussian mixture model(GMM)  edge detection  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国图象图形学报》浏览原始摘要信息
点击此处可从《中国图象图形学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号