首页 | 本学科首页   官方微博 | 高级检索  
     


Uracil DNA N-glycosylase distributively interacts with duplex polynucleotides containing repeating units of either TGGCCAAGCU or TGGCCAAGCTTGGCCAAGCU
Authors:AA Purmal  GW Lampman  EI Pourmal  RJ Melamede  SS Wallace  YW Kow
Affiliation:Department of Microbiology and Molecular Genetics, Markey Center for Molecular Genetics, University of Vermont, Burlington 05405.
Abstract:Uracil DNA N-glycosylase (UDG) has been used as a model enzyme to test a novel universal approach to discriminate between two possible enzymatic mechanisms of specific site location in DNA, processive (DNA-scanning mechanism) and distributive (random diffusion-mediated mechanism). Two double-stranded concatemeric polynucleotides of defined length (440-480 nucleotides) containing deoxyuridine at either every 10th or 20th nucleotide in the DNA chain were prepared by the ligation of self-complementary 10- or 20-mer oligodeoxyribonucleotides. Incubation of these polynucleotides with Escherichia coli UDG, followed by thermal breakage of the abasic sites, formed fragments that were multiples of either the 10- or the 20-mer. Since the processive and distributive mechanisms of uracil removal by UDG would be very different, the fragment distribution, generated at each time interval during the UDG reaction, should be unique. To show this, we developed a computer model illustrating both possible mechanisms of UDG functioning. The distribution of DNA fragments experimentally generated during the time course of the UDG reaction was compared with the results of the computer programs that modeled the distributive and processive mechanisms. The data indicated that uracil removal, catalyzed by UDG, is consistent with a distributive model.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号