首页 | 本学科首页   官方微博 | 高级检索  
     

基于泛化高斯模型infomax算法的水声信号盲分离
引用本文:余洁,谢宏,杨文璐. 基于泛化高斯模型infomax算法的水声信号盲分离[J]. 数字社区&智能家居, 2007, 0(20)
作者姓名:余洁  谢宏  杨文璐
作者单位:上海海事大学,信息工程学院,上海,200135 上海海事大学,信息工程学院,上海,200135 上海海事大学,信息工程学院,上海,200135
基金项目:上海市教委项目资助,项目编号(06FZ023)
摘    要:在信号盲分离领域中,信息最大化算法是一种比较成熟的算法,尤其在处理语音信号盲分离问题中,有着较好的效果.通过对水声信号幅值分布的研究,将基于概率密度函数估计的信息最大化算法运用到水声信号盲分离中,并通过仿真实验比较了基于不同概率密度函数的信息最大化算法对水声信号盲分离的效果.ICA算法的成功与否取决于它的概率密度模型是否能较好的拟合信号本身固有的统计分布.通过对船舶辐射噪声信号的盲分离实验证明了GGM能较好的拟合船舶辐射信号及海洋噪声信号这两种不同的概率分布.

关 键 词:盲分离  信息.最大化  概率密度估计  水声信号  泛化高斯模型

Infomax Based on GGM of the Acoustic Signal Blind Separation
YU Jie,XIE Hong,YANG Wen-lu. Infomax Based on GGM of the Acoustic Signal Blind Separation[J]. Digital Community & Smart Home, 2007, 0(20)
Authors:YU Jie  XIE Hong  YANG Wen-lu
Abstract:In the domain of the blind separation of signals, the infomax algorithm is a mature arithmetic. Which can achieve a successful separation results, especially in separating the speech signals. By using the arithmetic of infomax into the separation of underwater acoustic signals by researching the underwater acoustic signals distributing. And compare the effects of separating the underwater acoustic signals based on different probability density by doing the experimentations. Whether the arithmetic of ICA is successful or not depends on its probability density model to better fit the inherent statistical signal distribution. The ship radiated noise signals in the blind separation experiments proved GGM can better fit the ship radioactive signals and the marine noise signals these two different probability distribution.
Keywords:Blind Separation of Signals  infomax  the estimate of probability density  underwater acoustic signals  Generalized Gaussian Model(GGM)
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号