首页 | 本学科首页   官方微博 | 高级检索  
     

CRH2型动车组列车信息传输网络流量建模与预测
引用本文:葛诗春,刘雄飞,周锋. CRH2型动车组列车信息传输网络流量建模与预测[J]. 计算机科学, 2017, 44(10): 91-95, 126
作者姓名:葛诗春  刘雄飞  周锋
作者单位:中南大学物理与电子学院 长沙410006,中南大学物理与电子学院 长沙410006,中南大学物理与电子学院 长沙410006
基金项目:本文受国家自然科学基金资助
摘    要:针对CRH2型动车组列车网络流量数据日益复杂的特性,提出了一种将主成分分析法(PCA)与后馈神经网络(BP网络)相结合的网络流量建模预测思路。基于已搭建好的CRH2型列车通信仿真平台,对该仿真网络各条链路进行流量采集。为了降低分析的复杂度,流量数据先进行PCA降维预处理分析,再将数据输入到BP神经预测网络模型进行仿真预测。经验证,该思路能有效拟合列车主体网络流量的变化趋势,为CRH2型动车组通信网络的故障诊断分析提供了一定的参考。

关 键 词:CRH2型动车组  主成分分析  后馈神经网络  流量预测  故障诊断
收稿时间:2016-09-24
修稿时间:2016-12-11

Modeling and Prediction on Train Communication Network Traffic of CRH2 EMUs
GE Shi-chun,LIU Xiong-fei and ZHOU Feng. Modeling and Prediction on Train Communication Network Traffic of CRH2 EMUs[J]. Computer Science, 2017, 44(10): 91-95, 126
Authors:GE Shi-chun  LIU Xiong-fei  ZHOU Feng
Affiliation:School of Physics and Electronics,Central South University,Changsha 410006,China,School of Physics and Electronics,Central South University,Changsha 410006,China and School of Physics and Electronics,Central South University,Changsha 410006,China
Abstract:Aiming at the increasing complexity of the CRH2 train network traffic data,the method based on principal component analysis (PCA) and back propagation neural network (BP Network) was proposed to model and predict network traffic.Based on the built CRH2 train communication simulation platform,traffic of various links of the network has been collected.In order to reduce the complexity of analysis,the dimension reduction analysis is carried out with the application of PCA,then the data is input to BP network for simulation prediction.It is proved that the method can effectively fit the trend of the train network flow,providing concrete reference for the fault diagnosis of CRH2 train communication network.
Keywords:CRH2 type EMUs  Principal component analysis  Back propagation neural network  Traffic prediction  Fault diagnose
点击此处可从《计算机科学》浏览原始摘要信息
点击此处可从《计算机科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号