首页 | 本学科首页   官方微博 | 高级检索  
     


Microstructure and Cyclic Deformation Behavior of a Friction-Stir-Welded 7075 Al Alloy
Authors:AH Feng  DL Chen and ZY Ma
Affiliation:(1) Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada;(2) Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P.R. China;;
Abstract:Microstructural changes and cyclic deformation characteristics of friction-stir-welded 7075 Al alloy were evaluated. Friction stir welding (FSW) resulted in significant grain refinement and dissolution of η′ (Mg(Zn,Al,Cu)2) precipitates in the nugget zone (NZ), but Mg3Cr2Al18 dispersoids remained nearly unchanged. In the thermomechanically affected zone (TMAZ), a high density of dislocations was observed and some dislocations were pinned, exhibiting a characteristic Orowan mechanism of dislocation bowing. Two low-hardness zones (LHZs) between the TMAZ and the heat-affected zone (HAZ) were observed, with the width decreasing with increasing welding speed. Cyclic hardening and fatigue life increased with increasing welding speed from 100 to 400 mm/min, but were only weakly dependent on the rotational rate between 800 and 1200 rpm. The cyclic hardening of the friction-stir-welded joints exhibiting a two-stage character was significantly stronger than that of the base metal (BM) and the energy dissipated per cycle decreased with decreasing strain amplitude and increasing number of cycles. Fatigue failure occurred in the LHZs at a lower welding speed and in the NZ at a higher welding speed. Fatigue cracks initiated from the specimen surface or near-surface defects in the friction-stir-welded joints, and the initiation site exhibited characteristic intergranular cracking. Crack propagation was characterized by typical fatigue striations along with secondary cracks.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号