Modelling of crystal growth during the ribbon formation in planar flow casting |
| |
Authors: | Andreas Ludwig,Georg Frommeyer,L szl Gr n sy |
| |
Affiliation: | Andreas Ludwig,Georg Frommeyer,László Gránásy |
| |
Abstract: | The crystalline solidification during rapid substrate quenching in planar-flow casting was simulated by using a numerical model based on a rapid solidification algorithm and the infinite viscosity approximation. The calculation shows that the existence of a real melt puddle shape suppresses undercooling and recalescence on the melt surface as well as on the solidifying ribbon. The melt puddle length is mainly determined by the heat-transfer coefficient. With increasing heat transfer across the melt – substrate interface the melt puddle length decreases. If the formation rate of critical nuclei on the substrate surface is low compared to the present cooling rate a large undercooling may occur. The performed calculations reveal that an undercooling of up to 600 K does neither affect the temperature distribution on the surface of the melt nor the melt puddle length, perceptibly. Therefore, investigations on microstructural features of rapidly quenched metals might give detailed information on the amount of undercooling present at the beginning of solidification. |
| |
Keywords: | |
|
|