首页 | 本学科首页   官方微博 | 高级检索  
     

相干信源条件下的稀疏贝叶斯DOA估计
引用本文:何文超,梁龙凯,弓 馨. 相干信源条件下的稀疏贝叶斯DOA估计[J]. 电讯技术, 2021, 61(8): 993-998. DOI: 10.3969/j.issn.1001-893x.2021.08.012
作者姓名:何文超  梁龙凯  弓 馨
作者单位:长春人文学院 理工学院,长春130117
基金项目:吉教科合字〔2016〕第518号
摘    要:为了解决相干信源条件下的离格波达方向(Direction of Arrival,DOA)估计问题,在现阶段研究成果的基础上,将子空间平滑技术(Subspace Smoothing,SS)与离格稀疏贝叶斯算法(Off-grid Sparse Bayesian Interference,OGSBI)相结合,提出了SS-OG...

关 键 词:阵列信号处理  相干信源  DOA估计  加权子空间拟合  稀疏贝叶斯

Sparse Bayesian learning method for DOA estimation under coherent sources
HE Wenchao,LIANG Longkai,GONG Xin. Sparse Bayesian learning method for DOA estimation under coherent sources[J]. Telecommunication Engineering, 2021, 61(8): 993-998. DOI: 10.3969/j.issn.1001-893x.2021.08.012
Authors:HE Wenchao  LIANG Longkai  GONG Xin
Affiliation:College of Science and Engineering,Changchun Humanities and Sciences College,Changchun 130117,China
Abstract:Direction of arrival(DOA) estimation of coherent sources is one of the important researches in the field of signal processing.In order to solve the problem of off-grid DOA estimation under the condition of coherent source,subspace smoothing technique(SS) is combined with off-grid sparse Bayesian interference(OGSBI) algorithm,and the SS-OGSBI is proposed.In order to improve the performance of the algorithm under low signal-to-noise ratio with fewer sample datas,the SS-WSF-OGSBI algorithm is proposed by combining with the weighted subspace fitting(WSF) technique.Compared with the current sparse Bayesian learning(SBL) algorithm,the proposed algorithm has obvious advantages in root mean square error and estimation success rate.
Keywords:array signal processing  coherent sources  DOA estimation  weighted subspace fitting  sparse Bayes
本文献已被 万方数据 等数据库收录!
点击此处可从《电讯技术》浏览原始摘要信息
点击此处可从《电讯技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号