首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP和Elman神经网络的智能变电站录波启动判据算法
引用本文:刘建华,李天玉,付娟娟,吴楠. 基于BP和Elman神经网络的智能变电站录波启动判据算法[J]. 电力系统保护与控制, 2014, 42(5): 110-115
作者姓名:刘建华  李天玉  付娟娟  吴楠
作者单位:中国矿业大学信息与电气工程学院,江苏 徐州 221116;中国矿业大学信息与电气工程学院,江苏 徐州 221116;中国矿业大学信息与电气工程学院,江苏 徐州 221116;武汉大学电气工程学院,湖北 武汉 430072
摘    要:针对传统故障录波启动判据算法的局限性,提出一种基于BP神经网络和Elman神经网络的算法。以A、B两相电流越限为例进行了算法的研究,通过选取启动判据样本来训练BP和Elman神经网络,将启动判据信息输入到训练好的两种模型中,由输出结果就可以判断是否需要启动录波。Matlab输出表明:基于BP神经网络的故障录波启动判据算法能有效地完成录波启动,误差较小,但是速度相对较慢;而基于Elman神经网络的故障录波启动判据算法也可以完成录波启动,但是误差稍大,由于带有反馈环节,所以速度较平稳,易于工程实现。较之两种算法,可针对故障录波数据量的大小进行择优选择。

关 键 词:智能变电站  故障录波  启动判据  BP神经网络  Elman神经网络  模式识别
收稿时间:2013-08-09
修稿时间:2013-11-27

Criteria algorithm for smart substation recorder starting based on BP & Elman neural network
LIU Jian-hu,LI Tian-yu,FU Juan-juan and WU Nan. Criteria algorithm for smart substation recorder starting based on BP & Elman neural network[J]. Power System Protection and Control, 2014, 42(5): 110-115
Authors:LIU Jian-hu  LI Tian-yu  FU Juan-juan  WU Nan
Affiliation:School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China;School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China;School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China;School of Electrical Engineering, Wuhan University, Wuhan 430072, China
Abstract:As to the limitation of traditional starting criteria for fault recorder algorithm, this paper proposes an algorithm based on BP neural network and Elman neural network. An example of phase A and phase B current out-of-limit is studied with the algorithm. By choosing starting criteria samples to train BP and Elman neural network, then inputting the starting criteria information to the two trained models, whether to start recording can be judged from the output results. The outcome of MATLAB simulation shows that the starting criteria for fault recorder algorithm based on BP neural network can effectively complete the recording start with minor error, but the pace is comparatively slower. The starting criteria for fault recorder algorithm based on Elman neural network can also complete the recording start, but the error is bigger. Thanks to the part of feedback, the pace is smooth and steady and easy to accomplish in engineering project. Comparing two algorithms, the suitable one can be selected according to the amount of recorded data.
Keywords:smart substation   fault recorder   starting criteria   BP neural network   Elman neural network   pattern distinction
本文献已被 CNKI 等数据库收录!
点击此处可从《电力系统保护与控制》浏览原始摘要信息
点击此处可从《电力系统保护与控制》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号