首页 | 本学科首页   官方微博 | 高级检索  
     


Deformation behavior and mechanisms of a nanocrystalline multi-phase aluminum alloy
Authors:Leon L. Shaw  Hong Luo
Affiliation:(1) Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
Abstract:A nanocrystalline (nc) Al–Fe–Cr–Ti alloy containing 30 vol.% nc intermetallic particles has been used to investigate deformation behavior and mechanisms of nc multi-phase alloys. High compressive strengths at room and elevated temperatures have been demonstrated. However, tensile fracture strengths below 300 °C are lower than the corresponding maximum strengths in compression. Creep flow of the nc fcc-Al grains is suppressed even though rapid dynamic recovery has occurred. It is argued that the compressive strength at ambient temperature is controlled by propagation of dislocations into nc fcc-Al grains, whereas the compressive strength at elevated temperature is determined by dislocation propagation as well as dynamic recovery. The low tensile fracture strengths and lack of ductility at temperatures below 300 °C are attributed to the limited dislocation storage capacity of nanoscale grains. Since the deformation of the nc Al-alloy is controlled by dislocation propagation into nc fcc-Al grains, the smaller the grain size, the higher the strength. This new microstructural design methodology coupled with ductility-improving approaches could present opportunities for exploiting nc materials in structural applications at both ambient and elevated temperatures.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号