首页 | 本学科首页   官方微博 | 高级检索  
     

交通流视频检测中背景模型与阴影检测算法
引用本文:李志慧,张长海,曲昭伟,王殿海. 交通流视频检测中背景模型与阴影检测算法[J]. 吉林大学学报(工学版), 2006, 36(6): 993-0997
作者姓名:李志慧  张长海  曲昭伟  王殿海
作者单位:1. 吉林大学,交通学院,长春,130022;吉林大学,计算机科学与技术学院,长春,130012
2. 吉林大学,计算机科学与技术学院,长春,130012
3. 吉林大学,交通学院,长春,130022
基金项目:国家自然科学基金;吉林省科技厅国际合作处资助项目;国家人事部归国优秀人员基金
摘    要:提出了基于对象级的混合高斯背景模型更新方法与基于RGB颜色变化度的运动阴影检测算法。根据运动分割、物体识别、Kalman运动跟踪等高层语义表达,结合像素的时空特性,进行基于对象级的混合高斯背景更新。克服了像素级混合高斯模型中交通控制信号或交通阻塞等造成的长时间停车以及交通高峰期交通拥挤等情况下对背景抽取造成的影响;根据运动目标的RGB颜色变化度特点,提出自适应的对象级运动阴影检测算法,克服了运动阴影的影响及其造成的误分类。不同交通状态下的视频处理效果表明,该方法具有良好的鲁捧性和自适应性。

关 键 词:计算机应用  视频检测  背景提取模型  阴影检测  交通流检测
文章编号:1671-5497(2006)06-0993-05
收稿时间:2005-11-03
修稿时间:2005-11-03

Background extraction model and shadow detection algorithm in traffic flow video detection
Li Zhi-hui,Zhang Chang-hai,Qu Zhao-wei,Wang Dian-hai. Background extraction model and shadow detection algorithm in traffic flow video detection[J]. Journal of Jilin University:Eng and Technol Ed, 2006, 36(6): 993-0997
Authors:Li Zhi-hui  Zhang Chang-hai  Qu Zhao-wei  Wang Dian-hai
Affiliation:1. College of Transportation, Jilin University, Changchun 130022, China;2. College of Computer Science and Technology, Jilin University, Changchun 130012, China
Abstract:To alleviate the difficulties in the detection and recognition of the moving objects, even the possibility of the object misclassification, due to the effect of the variation of the moving object shadow and the background factors, a mixed Gaussian background update model based on the object level and a moving object shadow detection algorithm based on the RGB color variation degree were proposed. It performs the mixed Gaussian background update according to the object high-level semantic expressions, such as movement segmentation, object recognition, Kalman movement tracking, etc. , in the light of spatio temporal features of the pixels, eliminates the effect of the prolonged traffic standstill due to the traffic control signs and the rushtime traffic congestion on the background extraction in the mixed Gaussian model based on the pixel level, avoids the object misclassification due to effect of the moving shadows. The results of experiment on the video pictures of different traffic conditions showed the proposed technique is robust and self-adaptive.
Keywords:computer application    video detection    background extraction model    shadow detection    traffic flow detection
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《吉林大学学报(工学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号