首页 | 本学科首页   官方微博 | 高级检索  
     


Modelling of the HFR-EU1BIS experiment and thermomechanical evaluation
Authors:S de Groot  K Bakker  MA Fütterer
Affiliation:a NRG, Nuclear Research and Consultancy Group, P.O. Box 25, NL-1755 ZG Petten, The Netherlands
b JRC-IE, Joint Research Center-Institute for Energy, P.O. Box 2, NL-1755 ZG Petten, The Netherlands
Abstract:Numerical modelling has been successfully applied during the design and evaluation of the HFREU1bis HTR fuel pebble irradiation experiment conducted by the Joint Research Centre Institute for Energy (JRC) in the HFR Petten, The Netherlands. HFR-EU1bis contains 5 HTR fuel pebbles that are placed in a graphite shroud. This assembly is placed in a containment tube, which is again placed in another containment, which is in contact with the HFR cooling water.The experimental requirement is to maintain a central temperature of 1250 °C for all pebbles throughout the irradiation time of 250 effective full power days (efpd). This was achieved by tailoring the gas gaps in the sample holder such that the axial heat generation profile is compensated. Determining the dimensions of the components of the experiment has been done using a thermomechanical finite element model. A combination of numerical and analytical techniques has been applied to minimise calculation times. The thermomechanical finite element model includes the thermal influence of changing gas gap dimensions due to expansion. Heat transfer by radiation through the gas gap has been modelled as well.Results of the model have been compared with measured temperatures. After some adjustments of the model parameters, good agreement has been found between calculated and measured temperatures. Additionally, the influence of irradiation on graphite thermal conductivity and thermal expansion has been included in the model. Due to irradiation damage the thermal conductivity of graphite decreases and thermal expansion generally increases, leading to increasing thermal stresses. Due to burn-up however, the heat flux decreases during irradiation, which leads to a decrease in thermal stresses. To evaluate the influence of these competing mechanisms, the thermal stress evolution during irradiation has been calculated and will be discussed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号