首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental investigations while hard machining of DIEVAR tool steel (50 HRC)
Authors:Bala Murugan Gopalsamy  Biswanath Mondal  Sukamal Ghosh  Kristian Arntz  Fritz Klocke
Affiliation:1. Central Mechanical Engineering Research Institute, Durgapur, 713209, India
2. National Institute of Technology, Durgapur, 713 209, India
3. Fraunhofer Institute for Production Technology, 52074, Aachen, Germany
Abstract:This paper describes hard machining which offers many potential benefits over traditional manufacturing techniques. In this work, investigations were carried out on end milling of hardened tool steel DIEVAR (hardness 50 HRC), a newly developed tool steel material used by tool- and die-making industries. The objective of the present investigation was to study the performance characteristics of machining parameters such as cutting speed, feed, depth of cut and width of cut with due consideration to multiple responses, i.e. volume of material removed, tool wear, tool life and surface finish. Performance evaluation of physical vapour deposition-coated carbide inserts, ball end mill cutter and polycrystalline cubic boron nitride inserts (PCBN) was done for rough and finish machining on the basis of flank wear, tool life, volume of material removed, surface roughness and chip formation. It has been observed from investigations that chipping, diffusion and adhesion were active tool wear mechanisms and saw-toothed chips were formed whilst machining DIEVAR hard steel. PCBN inserts give an excellent performance in terms of tool life and surface finish in comparison with carbide-coated inserts. End milling technique using PCBN inserts could be a viable alternative to grinding in comparison to ball end mill cutter in terms of surface finish and tool life.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号