首页 | 本学科首页   官方微博 | 高级检索  
     


Error calculation for corrective machining with allowance requirements
Authors:Yifan Dai  Shanyong Chen  Nianhui Kang  Shengyi Li
Affiliation:1. School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, 454000, People’s Republic of China
2. College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People’s Republic of China
Abstract:Electroforming copper from the copper sulfate baths or the pyrophosphate baths is one of commonly used methods for manufacturing electro-discharge machining (EDM) tool electrode, in particular for the fabrication of micro- and meso-scale tool electrodes with complex cross-section, but few literature on the electrode-wear performance of electroformed copper electrode has been available until today. To better select copper tool electrode materials, the wear resistance of the macroscopic and tiny copper tool electrodes deposited from the copper sulfate baths and the pyrophosphate baths were investigated comparatively with the same micro-EDM parameters. The optimal electrodeposition parameters in which the deposited copper had the lowest electrode-wear ratio were first obtained from the two baths, respectively. And then, the wear resistance of the micro-featured copper tool electrode electroformed using the optimal deposition conditions from the two baths were evaluated comparatively. Experimental investigations showed that, both at the macro-scale level and at the micro-scale level, the copper tool electrode electroformed from the pyrophosphate baths (the smallest electrode-wear ratio was 10% for the macro-electrode and 12.8% for the micro-electrode) exhibited better wear resistance than that deposited from the copper sulfate baths (the smallest electrode-wear ratio was 11.95% for the macro-electrode and 17.3% for the micro-electrode).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号