首页 | 本学科首页   官方微博 | 高级检索  
     


Oxidation resistance and thermal stability of the SiC-ZrB2 composite ceramic fibers
Authors:Hao Zhang  Min Ge  Huifeng Zhang  Weijia Kong  Shouquan Yu  Weigang Zhang
Affiliation:Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
Abstract:In this study, continuous SiC-ZrB2 composite ceramic fibers were synthesized from a novel pre-ceramic polymer of polyzirconocenecarbosilane (PZCS) via melt spinning, electron beam cross-linking, pyrolysis, and finally sintering at 1800°C under argon. The ZrB2 particles with an average grain size of 30.7 nm were found to be uniformly dispersed in the SiC with a mean size of 59.7 nm, as calculated using the Scherrer equation. The polycrystalline fibers exhibit dense morphologies without any obvious holes or cracks. The tensile strength of the fibers was greater than 2.0 GPa, and their elastic modulus was ~380 GPa. After oxidation at 1200°C for 1 hour, the strength of the fibers did not decrease despite a small loss of elastic modulus. Compared to the advanced commercial SiC fibers of Tyranno SA, the fibers exhibited improved high-temperature creep resistance in the temperature range 1300-1500°C.
Keywords:creep  fibers  oxidation resistance  silicon carbide
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号