Na2SO4 deposit-induced hot corrosion of SiC fibers relevant for SiC CMCs |
| |
Authors: | Lucas A. Herweyer Elizabeth J. Opila |
| |
Affiliation: | Department of Materials Science and Engineering, School of Engineering and Applied Sciences, University of Virginia, Charlottesville, VA, USA |
| |
Abstract: | Hi Nicalon, Hi Nicalon S, Sylramic, and Sylramic iBN SiC fibers were exposed to ~60 μg/cm2 of Na2SO4 in a 0.1% SO2/O2 gaseous environment for times between 0.75 and 24 h at 1000°C. After exposure, the corrosion products were characterized using SEM, EDS, ICP-OES, TEM, and EFTEM to determine their high-temperature resistance to Na2SO4 and key reaction mechanisms. All SiC fiber types tested in this work exhibited little resistance to Na2SO4 deposit-induced attack relative to their behavior in dry O2 environments. It was found that Hi-Nicalon displayed the least resistance to Na2SO4 deposit-induced attack due to excess carbon content resulting in the formation of a highly porous crystalline oxide and promotion of basic corrosion conditions. All fiber types formed a crystalline SiO2 reaction product, either cristobalite or tridymite. Sylramic and Sylramic iBN formed a crystalline SiO2 reaction layer containing TiO2 needles due oxidation of TiB2 particles. Additionally, Na2SO4 deposits resulted in pitting of all fiber surfaces. |
| |
Keywords: | corrosion/corrosion resistance fibers oxidation silica silicon carbide |
|
|