首页 | 本学科首页   官方微博 | 高级检索  
     


Liquid electrolyte positioning along the device channel influences the operation of Organic Electro-Chemical Transistors
Authors:Pasquale D&rsquo   Angelo,Nicola Coppedè  ,Giuseppe Tarabella,Agostino Romeo,Francesco Gentile,Salvatore Iannotta,Enzo Di Fabrizio,Roberto Mosca
Affiliation:1. Istituto Materiali per Elettronica e Magnetismo, IMEM-CNR, Parco Area delle Scienze 37/A, 43125 Parma, Italy;2. BioNEM Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy;3. Nanostructures Department, Italian Institute of Technology, IIT, Via Morego 30, 16163 Genova, Italy;4. King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
Abstract:In this work, we show the influence of the liquid electrolyte adsorption by porous films made of poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate), PEDOT:PSS, on the operation of an Organic Electro-Chemical Transistor with an active channel based on these polymeric films. In particular, the effect of film hydration on device performance is evaluated by studying its electrical response as a function of the spatial position between the electrolyte and the channel electrodes. This is done by depositing a PEDOT:PSS film on a super-hydrophobic surface aimed at controlling the electrolyte confinement next to the electrodes. The device response shows that the confinement of ionic liquids near to the drain electrode results in a worsening of the current modulation. This result has been interpreted in the light of studies dealing with the transport of ions in semiconducting polymers, indicating that the electrolyte adsorption by the polymeric film implies the formation of liquid pathways inside its bulk. These pathways, in particular, affect the device response because they are able to assist the drift of ionic species in the electrolyte towards the drain electrode. The effect of electrolyte adsorption on the device operation is confirmed by means of moving-front measurements, and is related to the reproducibility of the device operation curves by measuring repeatedly its electrical response.
Keywords:Organic Electro-Chemical Transistor   Electrochemical sensors   Polymers hydration   Moving-front technique   Super-hydrophobic surface
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号