首页 | 本学科首页   官方微博 | 高级检索  
     


Time-Dependent Quantum-Mechanical Approaches to the Continuous Spectrum: Scattering Resonances in a Finite Box
Authors:Audrey Dell Hammerich  J. Gonzalo Muga  Ronnie Kosloff
Affiliation:Department of Physical Chemistry and The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
Abstract:Several novel aspects of scattering resonances are studied. An expression, valid for a finite box, relating the continuum phase shift with the energy shift and unperturbed level separation is proposed and applied to obtain the resonance parameters. The effect of the resonance on propagating a wavepacket in imaginary time is studied. It is observed that the resonance strongly affects the cumulants of the energy distribution. In particular, a local minimum of the first derivative of the energy with respect to time (proportional to the second cumulant) serves to estimate the resonance energy and wavefunction. Once the estimate is known, the autocorrelation function is used to evaluate the resonance width. Alternatively, a new iterative approach is developed that is capable of selectively yielding an arbitrary band of energy eigenvalues and eigenfunctions on a grid. This method is applied to give those energy levels that are of interest for the discrete computation of the resonant phase shift, i.e., those close to resonance. Exact (analytical) and approximate results are in good agreement for a particular separable potential model in one dimension. These methods can be extended to realistic potentials in higher dimensions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号