首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP神经网络的电动伺服加载算法研究
引用本文:王权,李军,戴立. 基于BP神经网络的电动伺服加载算法研究[J]. 工业仪表与自动化装置, 2017, 0(2). DOI: 10.3969/j.issn.1000-0682.2017.02.002
作者姓名:王权  李军  戴立
作者单位:南京理工大学自动化学院,南京,210094
摘    要:该文从加载控制器角度出发将BP神经网络算法引入加载系统削弱多余力矩对系统的影响,提高加载精度。建立了电动伺服加载系统的数学模型,分析了多余力矩产生的原因以及基于结构不变原理存在的局限性。介绍了BP神经网络控制算法基本原理,并给出了具体控制结构及相应算法,设计了一种BP/PID复合控制器。仿真结果表明,复合控制器有效地抑制了系统的多余力矩,降低跟踪误差,改善加载系统的动态性能,提高了跟踪精度,增强了稳定性。

关 键 词:电动加载系统  BP神经网络  多余力矩  复合控制

Research on electric loading simulator algorithms based on BP neural network
WANG Quan,LI Jun,DAI Li. Research on electric loading simulator algorithms based on BP neural network[J]. Industrial Instrumentation & Automation, 2017, 0(2). DOI: 10.3969/j.issn.1000-0682.2017.02.002
Authors:WANG Quan  LI Jun  DAI Li
Abstract:This paper introduces the intelligent control algorithm of BP neural network into the loading system to weaken the influence of surplus torque on the system, and to improve the accuracy of loading.The mathematical model of the electric servo loading system is established, and the reasons of the surplus torque and the limitation of the structure invariance principle are analyzed.This paper introduces the basic principle of BP neural network control algorithm, gives the concrete control structure and the corresponding algorithm, and designs a kind of BP/PID composite controller.The simulation result shows that the composite controller can not only effectively restrain the surplus torque of system, reduce tracking error and improve the dynamic performance of the loading system, but also improve the tracking precision and enhace the stability.
Keywords:electric loading system  BP neural network  surplus torque  compound control
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号