首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络的污水处理设备监测CPS设计
引用本文:赵文仓,潘锦宇. 基于神经网络的污水处理设备监测CPS设计[J]. 工业仪表与自动化装置, 2017, 0(3). DOI: 10.3969/j.issn.1000-0682.2017.03.029
作者姓名:赵文仓  潘锦宇
作者单位:青岛科技大学 自动化与电子工程学院,山东 青岛,266042
基金项目:山东省科技计划项目,山东省自然科学基金,山东省高等学校科技计划项目
摘    要:现阶段大部分污水处理设备使用单一传感器监测设备,故障识别率低。该文研发了一套新型污水处理设备监测系统,根据信息物理融合系统(CPS)的要求全面统筹,采用BP神经网络算法处理由传感器得到的数据,监测设备的不同状态。硬件芯片采用STM32,采用工业以太网和串口通信,采用C#语言开发上位机应用软件,采用HTML和JavaScript以及C#语言开发web远程监测系统。经测试,系统运行良好,故障识别率高。

关 键 词:传感器  信息物理融合系统  人工神经网络  污水处理设备  监测系统  远程查看

Design of CPS for monitoring of sewage treatment equipment based on neural network
ZHAO Wencang,PAN Jinyu. Design of CPS for monitoring of sewage treatment equipment based on neural network[J]. Industrial Instrumentation & Automation, 2017, 0(3). DOI: 10.3969/j.issn.1000-0682.2017.03.029
Authors:ZHAO Wencang  PAN Jinyu
Abstract:At present, most of the sewage treatment equipment is monitored by monitor with single sensors, so the fault recognition rate is low.In this paper , a set of new monitoring system for sewage treatment equipment is developed.The principle is that according to the comprehensive plan based on the requirements of cyber-physical system (CPS), BP neural network algorithm is used to process the data obtained from the sensor to monitor the different states of the equipment.For this system, Hardware chip of STM32, industrial Ethernet and serial communication, PC application software developed by C # language, and web remote monitoring system developed by HTML, JavaScript and C# language are used.Tests show that this system is running efficiently and the fault recognition rate is higher.
Keywords:sensor  cyber-physical system  artificial neural network  sewage treatment equipment  testing and monitoring system  remote viewing
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号