首页 | 本学科首页   官方微博 | 高级检索  
     


Establishment of Freezing Model for Reactor Safety Analysis
Abstract:A mechanistic simulation of molten core-material relocation is required to reasonably assess consequences of postulated core disruptive accidents (CDAs) in fast reactors (FRs). The dynamics of molten core-material freezing when it is driven into the channels surrounding the core region plays an important role since this affects fuel removal from the core region. Therefore, a mechanistic model for freezing behavior was developed and introduced into the FR safety analysis code, SIMMER-III, in this study. Based on the micro-physics of crystallization, two key assumptions, supercooling of melt in the vicinity of the wall and melt-wall contact resistance due to imperfect contact, were introduced. As a result, encouraging agreement both with measured melt-penetration lengths and freezing modes of UO2 and metals was obtained. Furthermore, in order to reinforce the developed model, a semi-empirical correlation to predict the supercooling temperature was found. The developed model with the new correlation reproduced both stainless steel freezing and alumina freezing.
Keywords:core disruptive accident  freezing  solidification  supercooling  contact resistance  safety analysis code  bulk freezing  conduction freezing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号