首页 | 本学科首页   官方微博 | 高级检索  
     


Form of circumferential weld-induced imperfections for tapered-wall cylindrical shell structures
Abstract:Initial geometric imperfections have a great effect on the buckling strength of thin-walled cylindrical shells under axial compression, and the circumferential weld-induced imperfection is usually the most deleterious imperfection form. Two axisymmetric imperfection forms proposed by Rotter and Teng have widely been employed in the buckling analysis of cylindrical shells. However, the applicability of the two forms for tapered-wall cylinders needs further study, since they are derived from the elastic bending theory for long thin-walled cylinders with a constant wall thickness. This paper presents a modified form of circumferential imperfection for tapered-wall cylinders. Finite element analyses are carried out by employing the trapezoidal strain field approach to model the welding process, and the obtained circumferential depression shapes are used to evaluate the availability of the modified imperfection form. It is shown that the modified imperfection form is reasonable for any wall thickness ratio between two adjacent strakes, and the most suitable shape function, which is very close to the FE results, can be obtained by giving suitable values of the roundness in the modified form.
Keywords:cylindrical shells  tapered-wall  circumferential imperfections  weld-induced imperfections  shape function  strain field
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号