首页 | 本学科首页   官方微博 | 高级检索  
     


Validation of a Computational Simulation Method for Evaluating Thermal Stratification in the Reactor Vessel Upper Plenum of Fast Reactors
Abstract:Validation of a numerical simulation method is carried out for thermal stratification phenomena in the reactor vessel upper plenum of advanced sodium-cooled fast reactors. The study mainly focuses on the fundamental applicability of commercial computational fluid dynamics (CFD) codes as well as an inhouse code to the evaluation of thermal stratification behavior including the simulation methods such as spatial mesh distribution and RANS-type turbulence models in the analyses. Two kinds of thermal stratification tests are used in the validation, which is done for relatively simple- and conventional-type upper plenum geometries with water and sodium as working fluids. Quantitative comparison between the simulation and test results clarifies that when used with a high-order discretization scheme of the convection term, the investigated CFD codes are applicable to evaluations of the basic behaviors of thermal stratification and especially the vertical temperature gradient of the stratification interface, which is important from the viewpoint of structural integrity. No remarkable difference is seen in the simulation results obtained using different RANS turbulence models, namely, the standard kε model, the RNG k-ε model, and the Reynolds stress model. It is further confirmed in a numerical experiment that the distribution of two or more meshes within the stratification interface will lead to accurate simulation of the interface temperature gradient with less than 10% error.
Keywords:numerical analysis  thermal stratification  turbulence model  sodium  fast reactor
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号