首页 | 本学科首页   官方微博 | 高级检索  
     


Development of Parallel Coupling System between Three-Dimensional Nodal Kinetic Code ENTREE and Two-Fluid Plant Simulator TRAC/BF1
Abstract:The high-speed three-dimensional neutron kinetic code ENTRÉE was developed based on the polynomial and semi-analytical nonlinear iterative nodal methods (PNLM and SANLM) with also introducing the discontinuity factor. In order to enhance the efficiency of transient calculation, the nonlinear correction-coupling coefficients are intermittently updated based on the changing rate of core state variables. By giving the analytical form for two-node problem matrix elements, the additional computing time in SANLM was minimized. A fast algorithm was developed for the multi table macro-cross section rebuilding process. The reactivity component model was implemented based on the variation of the neutron production and destruction terms. The code was coupled with the two-fluid thermal hydraulic plant simulator TRAC/BF1 through PVM or MPI protocols. Two codes are executed in parallel with exchanging the feedback parameters explicitly. Based on the LMW PWR transient benchmark, it was shown that both PNLM and SANLM spend less than 20% excess computing time in comparison with the coarse mesh finite difference method (CFDM). The implementation of the discontinuity factor was verified based on the DVP problem. Adequacy and parallel efficiency of the coupling system TRAC/BF1-ENTREE was demonstrated based on the BWR cold water injection transient proposed by NEA/CRP.
Keywords:nodal method  nonlinear iterative method  polynomial method  semi- analytical method  response matrix method  discontinuity factor  coupled plant simulator  PVM  MPI  ENTREE  TRAC/BF1  two-fluid model  DVP  cold water injection transient
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号