首页 | 本学科首页   官方微博 | 高级检索  
     


Shadow boundary incremental length diffraction coefficients appliedto scattering from 3-D bodies
Authors:Shore   R.A. Yaghjian   A.D.
Affiliation:Air Force Res. Lab., Hanscom AFB, MA;
Abstract:Shadow boundary incremental length diffraction coefficients (SBILDCs) are high-frequency fields designed to correct the physical optics (PO) field of a three-dimensional (3-D) perfectly electrically conducting scatterer. The SBILDCs are integrated along the shadow boundary of the 3-D object to approximate the field radiated by the nonuniform shadow boundary current (the difference between the exact and PO currents near the shadow boundary). This integral is added to the PO field to give an approximation to the exact scattered field that takes into account both PO and nonuniform shadow boundary currents on the scatterer. Like other incremental length diffraction coefficients, any SBILDC is based on the use of a 2-D canonical scatterer to locally approximate the surface of the 3-D scatterer to which it is applied. Circular cylinder SBILDCs are, to date, the only SBILDCs that have been obtained in closed form. In this paper, these closed-form expressions are validated by applying them for the first time to a 3-D scatterer with varying radius of curvature-the prolate spheroid. The results obtained clearly demonstrate that for bistatic scattering the combined PO-SBILDC approximation is considerably more accurate than the PO field approximation alone
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号