首页 | 本学科首页   官方微博 | 高级检索  
     


Fatty oil hydrogenation in supercritical solvents: Process design and safety issues
Authors:E. Ramí  rezM.J. Mayorga,D. CuevasF. Recasens
Affiliation:a University of Barcelona, 08028 Barcelona, Spain
b Polytechnic University of Catalonia, 08028 Barcelona, Spain
Abstract:A simulation study of a SCF process is carried out using Aspen™ with previously available catalytic kinetics for the simulation of the reactor. Two supported catalysts were considered: a standard Pd/carbon, and an egg-shell Pd/alumina, in a vapour-phase process that uses propane as solvent. Best reactor-catalyst combination was selected using optimization. Optimal reactor-catalyst conditions were: Pd (0.5 wt%) on alumina catalyst in tubes, shell cooling, inlet temperature 170 °C, space-time 100 s, 4 mol% of H2 in the feed, oil feed 1 mol%, propane 95 mol%, with pressure up to 20 MPa. Three SC solvents, were considered in the simulation. These were (i) SC propane, (ii) a cosolvent case with hexane-modified CO2, and (iii) a case with pure liquid hexane. In plant simulation, three recycle streams (H2, CO2 and cosolvent) complicate the separations. In order to assess the safety differences between these options, a study was done using the Dow Fire and Explosion Index to roughly figure out process safety. It is shown that plant complexity increases with cosolvent use, but the hazard index is sensibly reduced, from F&EI = 150 (pure propane) to a low value (F&EI = 60) for a plant with CO2 with 40 mol% of hexane as cosolvent.
Keywords:Hydrogenation   Heterogeneous catalyst   Supercritical solvent   Cosolvent   Hazards   Dow Fire and Explosion Index   Process simulation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号