基于互信息与层次聚类双重特征选择的改进朴素贝叶斯算法 |
| |
作者姓名: | 李欣倩 杨哲 任佳 |
| |
作者单位: | 浙江理工大学机械与自动控制学院,浙江杭州310018 |
| |
基金项目: | 浙江省自然科学基金项目(LY17F030024);浙江理工大学“521人才培养计划”项目(11130132521508) |
| |
摘 要: | 根据朴素贝叶斯算法的特征条件独立假设,提出一种基于互信息和层次聚类双重特征选择的改进朴素贝叶斯算法。通过互信息方法剔除不相关的特征,然后依据欧氏距离将删减后的特征进行分层聚类,通过粒子群算法得到聚类簇的数量,最后将每个聚类簇中与类别互信息最高的特征合并为特征子集,并由朴素贝叶斯算法得到分类准确率。根据实验结果可知,该算法可以有效减少特征之间的相关性,提升算法的分类性能。
|
关 键 词: | 朴素贝叶斯 双重特征选择 互信息 层次聚类 |
本文献已被 维普 万方数据 等数据库收录! |
| 点击此处可从《测控技术》浏览原始摘要信息 |
|
点击此处可从《测控技术》下载全文 |
|