首页 | 本学科首页   官方微博 | 高级检索  
     


Creep and fatigue crack propagation in a directionally-solidified carbide eutectic alloy
Authors:Brendon Scarlin
Affiliation:(1) Brown Boveri Central Laboratories, Dept. ZLM, 5400 Baden, Switzerland
Abstract:Creep and fatigue crack growth rates and threshold stress intensity amplitudes have been measured for a directionally solidified carbide-eutectic alloy, C73. Fatigue testing temperatures have been ambient, 750 and 950°C for cracking perpendicular and parallel to the solidification direction. In the former cracking direction comparative propagation rates may be understood in terms of the properties of the matrix, which shows a phase transformation from hexagonal to cubic above ~900°C. A situation where crack growth rates decrease with increasing apparent stress intensity amplitudes (ΔK) has been found to exist for propagation parallel to the solidification direction at low ΔK values and high temperatures only. This phenomenon can be related to the occurrence of crack branching and multiple cracking of the carbide fibers. Considerations of plastic zone sizes and critical defect sizes for crack propagation are consistent with the conditions necessary for such crack deceleration to occur. Transformation of the M7C3 fibers, present in the as-cast condition, to M23C6 at cell boundaries of the solidification structure occurs at a temperature of 950°C. Although M23C6 carbides are easily cracked and therefore probably reduce propagation rates by causing secondary cracking, their presence is known to be detrimental to creep properties. High cycle fatigue threshold stress intensity amplitudes for C73 in either loading direction at room temperature, 750 and 950°C are ~20 pct lower than for the cast nickel-base alloy, EST 738LC,i.e. critical defect sizes are ~10 pct smaller in C73. Despite the known sensitivity of cracking rates and threshold values to factors such as minor fluctuations in loading amplitude it is believed that these differences are significant.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号