首页 | 本学科首页   官方微博 | 高级检索  
     


Interactions between reducing CO2 emissions, CO2 removal and solar radiation management
Authors:Vaughan Naomi E  Lenton Timothy M
Affiliation:School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK. n.vaughan@uea.ac.uk
Abstract:We use a simple carbon cycle-climate model to investigate the interactions between a selection of idealized scenarios of mitigated carbon dioxide emissions, carbon dioxide removal (CDR) and solar radiation management (SRM). Two CO(2) emissions trajectories differ by a 15-year delay in the start of mitigation activity. SRM is modelled as a reduction in incoming solar radiation that fully compensates the radiative forcing due to changes in atmospheric CO(2) concentration. Two CDR scenarios remove 300 PgC by afforestation (added to vegetation and soil) or 1000 PgC by bioenergy with carbon capture and storage (removed from system). Our results show that delaying the start of mitigation activity could be very costly in terms of the CDR activity needed later to limit atmospheric CO(2) concentration (and corresponding global warming) to a given level. Avoiding a 15-year delay in the start of mitigation activity is more effective at reducing atmospheric CO(2) concentrations than all but the maximum type of CDR interventions. The effects of applying SRM and CDR together are additive, and this shows most clearly for atmospheric CO(2) concentration. SRM causes a significant reduction in atmospheric CO(2) concentration due to increased carbon storage by the terrestrial biosphere, especially soils. However, SRM has to be maintained for many centuries to avoid rapid increases in temperature and corresponding increases in atmospheric CO(2) concentration due to loss of carbon from the land.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号