首页 | 本学科首页   官方微博 | 高级检索  
     

自适应的图像组合降噪
引用本文:周登文,申晓留. 自适应的图像组合降噪[J]. 中国图象图形学报, 2008, 13(2): 219-224
作者姓名:周登文  申晓留
作者单位:华北电力大学计算机科学与技术系 北京102206
摘    要:BayesShrink是小波收缩降噪最好的算法之一,而WienerChop方法则是利用小波域维纳滤波改进了VisuShrink算法。为了更好地滤除噪声,研究了WienerChop组合BayesShrink进行降噪的方法。实验表明,该组合算法优于WienerChop和BayesShrink算法,其可产生更低的均方误差和更高的信噪比。它不仅综合了WienerChop和BayesShrink两种算法的优点,而且改善了WienerChop算法的过光滑和BayesShrink算法残留较多噪声的问题,同时可获得视觉上更为愉悦的降噪图像。

关 键 词:自适应  图像降噪  图像恢复  小波
文章编号:1006-8961(2008)02-0219-06
收稿时间:2006-08-13
修稿时间:2006-08-13

Adaptive Combined Image Denoising
ZHOU Deng-wen,SHEN Xiao-liu and ZHOU Deng-wen,SHEN Xiao-liu. Adaptive Combined Image Denoising[J]. Journal of Image and Graphics, 2008, 13(2): 219-224
Authors:ZHOU Deng-wen  SHEN Xiao-liu  ZHOU Deng-wen  SHEN Xiao-liu
Affiliation:(Department of Computer Science and Technology, North China Electric Power University, Beijing 102206)
Abstract:BayesShrink is one of the best algorithms for wavelet thresholding denoising,while WienerChop improves VisuShrink by Wiener filtering in wavelet domain.We studied the denoising method uniting BayesShrink and WienerChop.The combined algorithm has smaller mean squared erroe(MSE) and higher signal to noise ratio(SNR) than BayesShrink or WienerChop.It integrates the advantages of the two algorithms,and improves the problems which images are smoothed overly by WienerChop and BayesShrink retains some noise artifacts.It can visually obtain more pleasing denoised images.
Keywords:adaptive method  image denoising  image restoration  wavelet thresholding
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《中国图象图形学报》浏览原始摘要信息
点击此处可从《中国图象图形学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号