首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical simulation of the coupling problems of a solid sphere impacting on a liquid free surface
Authors:Minh Do-Quang  Gustav Amberg
Affiliation:Linné Flow Centre, Department of Mechanics, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
Abstract:This paper presents a model, using a phase-field method, that is able to simulate the motion of a solid sphere impacting on a liquid surface, including the effects of capillary and hydrodynamic forces. The basic phenomena that were the subject of our research effort are the small scale mechanism such as the wetting property of the solid surface which control the large scale phenomena of the interaction. The coupled problem during the impact will be formulated by the inclusion of the surface energies of the solid surface in the formulation, which gives a reliable prediction of the motion of solid objects in/on/out of a liquid surface and the hydrodynamic behaviours at small scales when the inertia of fluid is less important than its surface tension. Numerical results at different surface wettabilities and impact conditions will be presented and compared with the experiments of Duez el al. [C. Duez, C. Ybert, C. Clanet, L. Bocquet, Nat. Phys. 3 (2007) 180–183] and Lee and Kim [D. Lee, H. Kim, Langmuir 24 (1) (2008) 142].
Keywords:Numerical simulation   Solid&ndash  liquid impact   Cahn-Hilliard   Free interface   Wetting contact angle
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号