首页 | 本学科首页   官方微博 | 高级检索  
     

采用shearlet变换的多聚焦图像融合
引用本文:王 飞,王 瑶,史彩成. 采用shearlet变换的多聚焦图像融合[J]. 计算机工程与应用, 2016, 52(2): 205-208
作者姓名:王 飞  王 瑶  史彩成
作者单位:1.中国人民解放军93408部队2.北京理工大学 生命学院,北京 100081
摘    要:相对传统多尺度分析工具,shearlet变换更适于提取图像细节信息。采用shearlet变换进行图像融合,对源图像进行shearlet域分解,对低频子带采用SML算子作为融合依据,高频子带采取区域能量与单个像素相结合的方式选择系数,对融合后的系数进行逆shearlet变换得到融合图像。仿真实验表明,算法在视觉效果和量化结果上均有提高。

关 键 词:shearlet  图像融合  SML算子  

Multi-focus image fusion using shearlet transform
WANG Fei,WANG Yao,SHI Caicheng. Multi-focus image fusion using shearlet transform[J]. Computer Engineering and Applications, 2016, 52(2): 205-208
Authors:WANG Fei  WANG Yao  SHI Caicheng
Affiliation:1.Unit 93408 of PLA, China2.School of Life Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Abstract:Compared with traditional multi-scale analysis method, shearlet transform is more suitable for extracting details of the image. In the paper shearlet is used in multi-focus image fusion. The source images are decomposed into several subbands using shearlet. According to the characteristics of multi-focus images, the coefficients of low-frequency subband are fused with a scheme based on the SML operator. The coefficients of high-frequency subbands are fused with the fusion rule based on both local energy and single pixel. The fused image is obtained by performing the inverse shearlet transform on the combined coefficients. The experimental results show that this method obtains better fusion quality in terms of both visual and quantified measure.
Keywords:shearlet  image fusion  SML operator  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号