首页 | 本学科首页   官方微博 | 高级检索  
     

一种启发式的局部随机特征选择算法
引用本文:刘景华,林梦雷,张 佳,林耀进.一种启发式的局部随机特征选择算法[J].计算机工程与应用,2016,52(2):170-174.
作者姓名:刘景华  林梦雷  张 佳  林耀进
作者单位:闽南师范大学 计算机学院,福建 漳州 363000
摘    要:深入研究大间隔从样本间相似性、信息熵从特征间相关性进行特征选择的特点,提出一种有效地融合这两类方法的特征选择算法。采用Relief算法得到一个有效的特征排序,进而将其划分为若干区段。设置各区段的采样率,以对称不确定性作为启发因子获得每个局部随机子空间的特征子集。将获得的所有特征子集作为最终的特征选择结果。实验结果表明该方法优于一些常用的特征选择算法。

关 键 词:特征选择  大间隔  对称不确定性  局部随机子空间  

A kind of heuristic local random feature selection algorithm
LIU Jinghua,LIN Menglei,ZHANG Jia,LIN Yaojin.A kind of heuristic local random feature selection algorithm[J].Computer Engineering and Applications,2016,52(2):170-174.
Authors:LIU Jinghua  LIN Menglei  ZHANG Jia  LIN Yaojin
Affiliation:School of Computer Science, Minnan Normal University, Zhangzhou, Fujian 363000, China
Abstract:Two kinds of feature selection algorithms are further studied, i.e., the characteristic of large margin is the similarity between samples and the entropy is the correlation between features, an effective feature selection algorithm via fusing large margin and information entropy is proposed. The features are ranked by employing the algorithm of Relief, and the ranked feature list is partitioned into a few sections. Based on the heuristic factor of symmetric uncertainty, the feature subset in each local random subspace is obtained by setting the sampling rate of each section. The final feature subset is obtained by merging all feature subsets. Experimental results show that the proposed algorithm is superior to several feature selection algorithms.
Keywords:feature selection  large margin  symmetric uncertainty  local random subspace  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号