首页 | 本学科首页   官方微博 | 高级检索  
     


A quantum particle swarm optimization driven urban traffic light scheduling model
Authors:Hu  Wenbin  Wang  Huan  Qiu  Zhenyu  Nie  Cong  Yan  Liping
Affiliation:1.School of Computer, Wuhan University, Wuhan City, 430072, Hubei Province, China
;
Abstract:

Urban traffic congestion becomes a severe problem for many cities all around the world. How to alleviate traffic congestions in real cities is a challenging problem. Benefited from concise and efficient evolution rules, the Biham, Middleton and Levine (BML) model has a great potential to provide favorable results in the dynamic and uncertain traffic flows within an urban network. In this paper, an enhanced BML model (EBML) is proposed to effectively simulate the urban traffic where the timing scheduling optimization algorithm (TSO) based on the quantum particle swarm optimization is creatively introduced to optimize the timing scheduling of traffic light. The main contributions include that: (1) The actual urban road network with different two-way multi-lane roads is firstly mapped into the theoretical lattice space of BML. And the corresponding updating rules of each lattice site are proposed to control vehicle dynamics; (2) compared with BML, a much deeper insight into the phase transition and traffic congestions is provided in EBML. And the interference among different road capacities on forming traffic congestions is elaborated; (3) based on the scheduling simulation of EBML, TSO optimizes the timing scheduling of traffic lights to alleviate traffic congestions. Extensive comparative experiments reveal that TSO can achieve excellent optimization performances in real cases.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号