首页 | 本学科首页   官方微博 | 高级检索  
     


Structural chemistry and phase relations in intermetallic systems Ti–{Pd,Pt}–Al
Authors:Jin Jun Ding   Peter Rogl   Bernard Chevalier  Jean Etourneau
Affiliation:

a Institut fuer Physikalische Chemie der Universitaet Wien, A-1090 Wien, Waehringerstrasse 42, Austria

b Institut de Chimie de la Matiére Condensée de Bordeaux (ICMCB) CNRS-UPR 9048, Université de Bordeaux I, Ave. Dr. A. Schweitzer, 33608 Pessac, Cedex, France

Abstract:Phase relations in the ternary systems Ti–{Pd,Pt}–Al have been experimentally established for the partial isothermal sections at 950°C in the Pd/Pt-poor region (<25 at.% Pd/Pt). The investigation is based on X-ray powder diffraction, metallography, SEM and EMPA techniques on about 45 alloys, which were prepared by various methods employing arc melting, levitation melting under argon or by powder reaction sintering in closed crucibles. Three ternary compounds were observed at 950°C in the Ti–Pd–Al system: τ3-(Ti,Pd)(Ti,Pd,Al)2 with Laves-MgZn2-type, τ2-(Ti,Al)6(Ti,Pd,Al)23+1 with a filled Th6Mn23+1-type and τ1-(Ti,Pd,Al)(Ti,Pd,Al)3 with AuCu3-type. Due to the wide extension of the Laves phase field, there is no compatibility among γTiAl and τ2-(Ti,Al)6(Ti,Pd,Al)23+1. The Ti–Pt–Al system at 950°C contains three ternary compounds: τ3-(Ti,Al)(Ti,Pt,Al)2 with Laves-MgZn2-type, τ2-(Ti,Al)6(Ti,Pt,Al)23+1 with the filled Th6Mn23+1-type and τ1-(Ti,Pt,Al) with Cu-type. Compatibility exists for Al-rich γTiAl and τ2-(Ti,Al)6(Ti,Pt,Al)23+1. The typical feature for both alloy systems studied is the three-phase equilibrium: 2Ti3Al+γTiAl+τ3-(Ti,Pd/Al)(Ti,Pd/Pt,Al)2. The solid solubility of palladium and platinum in the binary titanium aluminides, as observed from EMPA and X-ray data, is rather small and at 950°C accounts to about 2.5 at.% Pd and 2.0 at.% Pt. Two new oxide compounds Ti3PdAl2Ox and Ti3PtAl2Ox with a filled Ti2Ni-type are observed in both quaternary systems.
Keywords:A. Titanium aluminides   A. Ternary alloy systems   B. Crystallography   B. Phase diagram   D. Site occupancy   F. Electron microprobe
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号