首页 | 本学科首页   官方微博 | 高级检索  
     


Visual wheel sinkage measurement for planetary rover mobility characterization
Authors:Christopher A Brooks  Karl D Iagnemma  Steven Dubowsky
Affiliation:(1) Department of Mechanical Engineering, 77 Massachusetts Ave., Room 3-473M, Cambridge, MA, 02139
Abstract:Wheel sinkage is an important indicator of mobile robot mobility in natural outdoor terrains. This paper presents a vision-based method to measure the sinkage of a rigid robot wheel in rigid or deformable terrain. The method is based on detecting the difference in intensity between the wheel rim and the terrain. The method uses a single grayscale camera and is computationally efficient, making it suitable for systems with limited computational resources such as planetary rovers. Experimental results under various terrain and lighting conditions demonstrate the effectiveness and robustness of the algorithm. Christopher Brooks is a graduate student in the Mechanical Engineering department of the Massachusetts Institute of Technology. He received his B.S. degree with honor in engineering and applied science from the California Institute of Technology in 2000, and his M.S. degree from the Massachusetts Institute of Technology in 2004. He is a student collaborator on the Mars Exploration Rover science mission. His research interests include mobile robot control, terrain sensing, and their application to improving autonomous robot mobility. He is a member of Tau Beta Pi. Karl Iagnemma is a research scientist in the Mechanical Engineering department of the Massachusetts Institute of Technology. He received his B.S. degree summa cum laude in mechanical engineering from the University of Michigan in 1994, and his M.S. and Ph.D. from the Massachusetts Institute of Technology, where he was a National Science Foundation graduate fellow, in 1997 and 2001, respectively. He has been a visiting researcher at the Jet Propulsion Laboratory. His research interests include rough-terrain mobile robot control and motion planning, robot-terrain interaction, and robotic mobility analysis. He is author of the monograph Mobile Robots in Rough Terrain: Estimation, Motion Planning, and Control with Application to Planetary Rovers (Springer, 2004). He is a member of IEEE and Sigma Xi. Steven Dubowsky received his Bachelor's degree from Rensselaer Polytechnic Institute of Troy, New York in 1963, and his M.S. and Sc.D. degrees from Columbia University in 1964 and 1971. He is currently a Professor of Mechanical Engineering at M.I.T and Director of the Mechanical Engineering Field and Space Robotics Laboratory. He has been a Professor of Engineering and Applied Science at the University of California, Los Angeles, a Visiting Professor at Cambridge University, Cambridge, England, and Visiting Professor at the California Institute of Technology. During the period from 1963 to 1971, he was employed by the Perkin-Elmer Corporation, the General Dynamics Corporation, and the American Electric Power Service Corporation. Dr. Dubowsky's research has included the development of modeling techniques for manipulator flexibility and the development of optimal and self-learning adaptive control procedures for rigid and flexible robotic manipulators. He has authored or co-authored nearly 300 papers in the area of the dynamics, control and design of high performance mechanical and electromechanical systems. Professor Dubowsky is a registered Professional Engineer in the State of California and has served as an advisor to the National Science Foundation, the National Academy of Science/Engineering, the Department of Energy, and the US Army. He is a fellow of the ASME and IEEE and is a member of Sigma Xi and Tau Beta Pi.
Keywords:Rough terrain  Mobile robots  Machine vision  Soil characterization  Mobility
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号