首页 | 本学科首页   官方微博 | 高级检索  
     


A systems approach to model the relationship between aflatoxin gene cluster expression,environmental factors,growth and toxin production by Aspergillus flavus
Authors:Ahmed Abdel-Hadi  Markus Schmidt-Heydt  Roberto Parra  Rolf Geisen  Naresh Magan
Affiliation:1.Applied Mycology Group, Cranfield Health, Cranfield University, Bedford MK43 0AL, UK;2.Max-Rubner Institute, Karlsruhe, Germany;3.Centro del Agua para América Latina y el Caribe (CAALCA), Instituto Tecnológico de Monterrey, Campus Monterrey, Monterrey, NL 64849, Mexico
Abstract:A microarray analysis was used to examine the effect of combinations of water activity (aw, 0.995–0.90) and temperature (20–42°C) on the activation of aflatoxin biosynthetic genes (30 genes) in Aspergillus flavus grown on a conducive YES (20 g yeast extract, 150 g sucrose, 1 g MgSO4·7H2O) medium. The relative expression of 10 key genes (aflF, aflD, aflE, aflM, aflO, aflP, aflQ, aflX, aflR and aflS) in the biosynthetic pathway was examined in relation to different environmental factors and phenotypic aflatoxin B1 (AFB1) production. These data, plus data on relative growth rates and AFB1 production under different aw × temperature conditions were used to develop a mixed-growth-associated product formation model. The gene expression data were normalized and then used as a linear combination of the data for all 10 genes and combined with the physical model. This was used to relate gene expression to aw and temperature conditions to predict AFB1 production. The relationship between the observed AFB1 production provided a good linear regression fit to the predicted production based in the model. The model was then validated by examining datasets outside the model fitting conditions used (37°C, 40°C and different aw levels). The relationship between structural genes (aflD, aflM) in the biosynthetic pathway and the regulatory genes (aflS, aflJ) was examined in relation to aw and temperature by developing ternary diagrams of relative expression. These findings are important in developing a more integrated systems approach by combining gene expression, ecophysiological influences and growth data to predict mycotoxin production. This could help in developing a more targeted approach to develop prevention strategies to control such carcinogenic natural metabolites that are prevalent in many staple food products. The model could also be used to predict the impact of climate change on toxin production.
Keywords:aflatoxin genes  systems biology  water activity  temperature  aflatoxins  predictive modelling
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号