首页 | 本学科首页   官方微博 | 高级检索  
     

基于流数据的列车在线状态监测方法研究与应用
引用本文:冯富人. 基于流数据的列车在线状态监测方法研究与应用[J]. 控制与信息技术, 2021, 0(1): 70-75
作者姓名:冯富人
作者单位:同济大学铁道与城市轨道交通研究院
摘    要:为实时地监测列车在线状态,传统的阈值检测方法只能从数值表现上对设备或系统状态做出判断,而忽略了数据趋势性变化所反映出的列车健康状态变化信息.文章针对列车在线运行过程中产生的流数据提出了一种基于一致性表现的流数据分析方法,其在离群异常点提供报警的同时,能够从特征变化趋势中挖掘信息,同时开发了一套应用于列车多功能车辆总线M...

关 键 词:流数据  智能维护  在线监测  MVB网络  一致性表现  列车总线

Research and Application of an Online Train Condition Monitoring Method Based on Streaming Data
FENG Furen. Research and Application of an Online Train Condition Monitoring Method Based on Streaming Data[J]. KONGZHI YU XINXI JISHU, 2021, 0(1): 70-75
Authors:FENG Furen
Affiliation:(Institute of Rail Transit,Tongji University,Shanghai 201804,China)
Abstract:In order to detect the online status of trains in real time,traditional threshold detection methods can only make judgments on the status of equipment or systems based on numerical performance,while ignoring the train health status changes reflected in the trend of data.This paper proposes a consistent performance-based streaming data analysis method for the streaming data generated in the online train operation process.It provides alarms for outliers and abnormal points,and can extract information from the characteristic change trends.At the same time,an intelligent maintenance equipment which applied to the train multifunction vehicle bus MVB network is designed to carry and verify the algorithm.After that,the train bus network test environment is simulated in the laboratory based on the train measured data and fault injection technology,and the train air brake system is used as the analysis object.Tested with the equipment,the results show that it can effectively alarm sudden abnormalities.In the early,middle and late stages of the health state,the alarm recognition rate is 85.7%,71.4%and 57.1%,and it can better identify and detect equipment performance degradation.
Keywords:streaming data  intelligent maintenance  online monitoring  MVB bus  consistent performance  train bus
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号