首页 | 本学科首页   官方微博 | 高级检索  
     

卷积神经网络的电力系统设备状态智能识别研究
引用本文:汪卫平. 卷积神经网络的电力系统设备状态智能识别研究[J]. 信息技术, 2021, 0(2): 115-119
作者姓名:汪卫平
作者单位:国网宁夏电力有限公司
摘    要:为提升电力系统设备状态识别效果,文中提出了卷积神经网络的电力系统设备状态智能识别方法.首先采集电力系统设备状态图像,采用卷积神经网络获取图像特征,然后根据图像内状态信息修正卷积神经网络参数,更新权值公式提取修正误差后的设备状态特征,将特征输入神经网络进行学习,建立电力系统设备状态智能识别模型,最后仿真测试结果表明,该方...

关 键 词:神经网络  电力系统  智能识别  池化层  全连接层

Intelligent recognition of power system equipment state based on CNN
WANG Wei-ping. Intelligent recognition of power system equipment state based on CNN[J]. Information Technology, 2021, 0(2): 115-119
Authors:WANG Wei-ping
Affiliation:(State Grid Ningxia Electric Power Co.,Ltd.,Yinchuan 750001,China)
Abstract:In order to improve the results of power system equipment state recognition,an intelligent recognition method of power system equipment status based on convolution neural network is proposed.Firstly,the equipment state image of power system is collected,and the image features are obtained by using convolution neural network.Then,according to the state information in the image,the parameters of convolution neural network are modified,the weight formula is updated,and the equipment state characteristics after error correction are extracted.The features are input into the neural network for learning,and the intelligent recognition model of power system equipment status is established.The method can accurately identify the status of power system equipment,and the accuracy rate of identifying 10 kinds of equipment status is higher than 99%,and the real-time performance is high.
Keywords:neural network  power system  intelligent recognition  pooling layer  fully connected layer
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号