首页 | 本学科首页   官方微博 | 高级检索  
     

低压低流速条件下的过冷沸腾换热特性
引用本文:袁红胜,谭思超,李仲春,黄涛,王啸宇,武小莉,高颖贤.低压低流速条件下的过冷沸腾换热特性[J].原子能科学技术,2018,52(11):1949-1955.
作者姓名:袁红胜  谭思超  李仲春  黄涛  王啸宇  武小莉  高颖贤
作者单位:1.中国核动力研究设计院 核反应堆系统设计技术重点实验室,四川 成都610213;2.哈尔滨工程大学 核安全与仿真技术国防重点学科实验室,黑龙江 哈尔滨150001
摘    要:为探究低压低流速条件下的过冷沸腾换热特性,开展本实验研究。通过分析实验中采集的热工参数和可视化图像,探究了沸腾滞后现象、沸腾失稳现象以及沸腾换热特性。实验发现沸腾起始点壁面过热度较高,而沸腾的发生大幅提高了换热系数,因此出现了显著的沸腾滞后现象。实验中较为光滑的加热面可达到较高的过热度,而低压下快速产生的气泡尺寸较大,在较低的热流密度下气液界面发生剧烈变化,使气泡破裂为多个小气泡并成为核化点。在过冷沸腾换热系数的预测中,Dittus-Boelter对流换热关系式不再适用,采用Hallman关系式和Gnielinski关系式计算对流换热系数,并引入壁面过热度对池式沸腾换热系数进行修正,可使过冷沸腾换热系数的预测精度大幅提高。

关 键 词:过冷沸腾    沸腾换热    核化点    沸腾滞后

Subcooled Flow Boiling Heat Transfer under Low Pressure and Low Flow Velocity
YUAN Hongsheng,TAN Sichao,LI Zhongchun,HUANG Tao,WANG Xiaoyu,WU Xiaoli,GAO Yingxian.Subcooled Flow Boiling Heat Transfer under Low Pressure and Low Flow Velocity[J].Atomic Energy Science and Technology,2018,52(11):1949-1955.
Authors:YUAN Hongsheng  TAN Sichao  LI Zhongchun  HUANG Tao  WANG Xiaoyu  WU Xiaoli  GAO Yingxian
Affiliation:1.Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610213, China;2.Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001, China
Abstract:An experimental study was conducted to investigate the characteristics of subcooled flow boiling heat transfer under low pressure and low flow velocity. By analyzing the thermal parameters and visual images acquired during the experiment, boiling hysteresis, boiling instability, and boiling heat transfer coefficient were explored. The experiment shows that the wall superheat at the boiling incipience is high, and the occurrence of boiling greatly increases the heat transfer coefficient, so there is a remarkable boiling hysteresis phenomenon. The relatively smooth heating surface can achieve a higher degree of superheat, while bubbles generated rapidly at low pressure is large in size, and the gas-liquid interface shows a significant disturbance at low heat flux, breaking the bubble into multiple small bubbles which serve as nucleation sites. In the prediction of subcooled boiling heat transfer coefficient, Dittus-Boelter convection heat transfer correlation is no longer applicable. The Hallman correlation and Gnielinski correlation were used to calculate the convection heat transfer coefficient, and the wall superheat was introduced to modify the pool heat transfer coefficient. The above procedure can greatly improve the prediction accuracy of the subcooled boiling heat transfer coefficient.
Keywords:subcooled flow boiling  boiling heat transfer  nucleation cavity  boiling hysteresis
本文献已被 CNKI 等数据库收录!
点击此处可从《原子能科学技术》浏览原始摘要信息
点击此处可从《原子能科学技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号