首页 | 本学科首页   官方微博 | 高级检索  
     


Bioethanol production from bio‐ organosolv pulps of Pinus radiata and Acacia dealbata
Authors:Claudio Muñoz  Regis Mendonça  Jaime Baeza  Alex Berlin  John Saddler  Juanita Freer
Affiliation:1. Renewable Resources Laboratory, Biotechnology Center, Universidad de Concepción, Casilla 160‐C, Concepción, Chile;2. Faculty of Forest Sciences, Universidad de Concepción, Casilla 160‐C, Concepción, Chile;3. Faculty of Chemical Sciences, Universidad de Concepción, Casilla 160‐C, Concepción, Chile;4. Forest Products Biotechnology, Faculty of Forestry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
Abstract:Wood chips from Pinus radiata and Acacia dealbata were pretreated with the white‐rot fungi Ceriporiopsis subvermispora and Ganoderma australe, respectively, for 30 days at 27 °C and 55% relative humidity, followed by an organosolv delignification with 60% ethanol solution at 200 °C for 1 h to produce pulps with high cellulose and low lignin content. Biotreatment for 30 days was chosen based on low weight and cellulose losses (lower than 4%) and lignin degradation higher than 9%. After organosolv delignification, pulp yield for P. radiata and A. dealbata pulps was 45–49% and 31–51%, respectively. P. radiata bio‐pulps showed higher glucan (93%) and lower lignin content (6%) than control pulps (82% glucan and 13% lignin). A. dealbata bio‐pulps also showed higher glucan (95%) and lower lignin content (2%) than control pulps (92% glucan and 4% lignin). Pulp suspensions at 2% consistency were submitted either to separate enzymatic hydrolysis and fermentation (SHF) or simultaneous enzymatic saccharification and fermentation (SSF) for bioethanol production. The yeast Saccharomyces cerevisiae was used for fermentation. Glucan‐to‐glucose conversion in the enzymatic hydrolysis of control and bio‐pulps of P. radiata was 55% and 100%, respectively, and it was 100% for all pulp samples case of A. dealbata. The highest ethanol yield (calculated as percentage of theoretical yield) during SHF of P. radiata control and bio‐pulps was 38% and 55%, respectively, and for A. dealbata control and bio‐pulps 62% and 69%, respectively. The SSF of P. radiata control and bio‐pulps yielded 10% and 65% of ethanol, respectively, and 77% and 82% for A. dealbata control and bio‐pulps, respectively. In wood basis, the maximum conversion obtained (g ethanol per kg wood) in SHF was 37% and 51% (for P. radiata and A. dealbata pulps, respectively) and 44% and 65% in SSF (for P. radiata and A. dealbata pulps, respectively) regarding the theoretical yield. The low wood‐to‐ethanol conversion was associated with low pulp yield (A. dealbata pulps), high residual lignin amount (P. radiata pulps) and the low pulp consistency (2%) used for SHF and SSF. Copyright © 2007 Society of Chemical Industry
Keywords:bioethanol  organosolv pulping  Pinus radiata  Acacia dealbata  Ceriporiopsis subvermispora  Ganoderma australe
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号