首页 | 本学科首页   官方微博 | 高级检索  
     


Detection of K in soil using time-resolved laser-induced breakdown spectroscopy based on convolutional neural networks
Abstract:One of the technical bottlenecks of traditional laser-induced breakdown spectroscopy (LIBS) is the difficulty in quantitative detection caused by the matrix effect. To troubleshoot this problem, this paper investigated a combination of time-resolved LIBS and convolutional neural networks (CNNs) to improve K determination in soil. The time-resolved LIBS contained the information of both wavelength and time dimension. The spectra of wavelength dimension showed the characteristic emission lines of elements, and those of time dimension presented the plasma decay trend. The one-dimensional data of LIBS intensity from the emission line at 766.49 nm were extracted and correlated with the K concentration, showing a poor correlation of R2c=0.0967, which is caused by the matrix effect of heterogeneous soil. For the wavelength dimension, the two-dimensional data of traditional integrated LIBS were extracted and analyzed by an artificial neural network (ANN), showing R2v=0.6318 and the root mean square error of validation (RMSEV)=0.6234. For the time dimension, the two-dimensional data of time-decay LIBS were extracted and analyzed by ANN, showing R2v=0.7366 and RMSEV=0.7855. These higher determination coefficients reveal that both the non-K emission lines of wavelength dimension and the spectral decay of time dimension could assist in quantitative detection of K. However, due to limited calibration samples, the two-dimensional models presented over-fitting. The three-dimensional data of time-resolved LIBS were analyzed by CNNs, which extracted and integrated the information of both the wavelength and time dimension, showing the R2v=0.9968 and RMSEV=0.0785. CNN analysis of time-resolved LIBS is capable of improving the determination of K in soil.
Keywords:quantitative detection   potassium (K)   soil   time-resolved laser-induced breakdown spectroscopy (LIBS)   convolutional neural networks (CNNs)  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《等离子体科学和技术》浏览原始摘要信息
点击此处可从《等离子体科学和技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号