首页 | 本学科首页   官方微博 | 高级检索  
     


Efficiency of local models ensembles for time series prediction
Authors:David Martínez-Rego  Oscar Fontenla-Romero  Amparo Alonso-Betanzos
Affiliation:1. Computer Science Department, University of Western Ontario, London, ON N6A 3K7, Canada;2. School of Computer, National University of Defense Technology, Changsha 410073, China;3. School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China
Abstract:Many current technological challenges require the capacity of forecasting future measurements of a phenomenon. This, in most cases, leads directly to solve a time series prediction problem. Statistical models are the classical approaches for tackling this problem. More recently, neural approaches such as Backpropagation, Radial Basis Functions and recurrent networks have been proposed as an alternative. Most neural-based predictors have chosen a global modelling approach, which tries to approximate a goal function adjusting a unique model. This philosophy of design could present problems when data is extracted from a phenomenon that continuously changes its operational regime or represents distinct operational regimes in a unbalanced manner. In this paper, two alternative neural-based local modelling approaches are proposed. Both follow the divide and conquer principle, splitting the original prediction problem into several subproblems, adjusting a local model for each one. In order to check their adequacy, these methods are compared with other global and local modelling classical approaches using three benchmark time series and different sizes (medium and high) of training data sets. As it is shown, both models demonstrate to be useful pragmatic paradigms to improve forecasting accuracy, with the advantages of a relatively low computational time and scalability to data set size.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号