首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of supplementary cementitious materials on engineering properties of high strength concrete
Authors:M.A. Megat Johari  J.J. Brooks  Shahid Kabir  Patrice Rivard
Affiliation:1. School of Civil Engineering, Universiti Sains Malaysia, Malaysia;2. School of Civil Engineering, University of Leeds, United Kingdom;3. University of Sherbrooke, Sherbrooke, Quebec, Canada
Abstract:The influence of supplementary cementitious materials (SCMs), namely silica fume, metakaolin, fly ash and ground granulated blast-furnace slag, on the engineering properties of high strength concrete (HSC) has been investigated in this study. Workability, compressive strength, elastic modulus, porosity and pore size distribution were assessed in order to quantify the effects of the different materials. The results show that the inclusion of the different SCMs has considerable influence on the workability of HSC. Silica fume and metakaolin significantly enhanced the strength of HSC. Fly ash reduced the early-age strength; however, it enhanced the long-term strength of the HSC. Likewise, ground granulated blast-furnace slag impaired the early-age strength, but marginally improved the long-term strength at low replacement levels. The general effect of the different SCMs on the elastic modulus of HSC is rather small compared to their effect on strength. There are good correlations between both static and dynamic moduli and compressive strength. The EC 2 and ACI 209 provide a good estimate of static modulus of elasticity from compressive strength, while the BS8110 gives a good estimate of static modulus of elasticity from dynamic modulus of HSC containing the different SCMs. Porosity and pore size were reduced with the addition of the different SCMs. The volume of mesopores in the ranges of <15 nm and 15 – 30 nm was notably increased for HSC containing SCMs, whereas the percentage of macropores was significantly reduced.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号